mixture was stirred for 16 h at room temperature. Evaporation of the unreacted acetic anhydride-pyridine mixture under reduced pressure afforded the phthalimido product. Crystallization from the appropriate solvent (Table I) gave pure phthalimido compounds.

The IR spectra of compounds $\mathbf{7 - 1 0}$ showed NH stretching at $3350-3365 \mathrm{~cm}^{-1}$ and the amide carbonyl at $1680 \mathrm{~cm}^{-1}$. The carbonyl groups of the carboxylic acids of compounds 7-11 disappeared, and a new band appeared at $\sim 1700 \mathrm{~cm}^{-1}$ corresponding to the imido group (-CONH-CO-).
${ }^{1} \mathrm{H}$ NMR spectra of compounds 7-11 were in full agreement with these for compounds 1-6 except for the disappearance of the carboxylic and amide protons.

Registry No. 1, 16067-61-1; 2, 118071-17-3; 3, 118071-18-4; 4, 118071-19-5; 5, 70988-26-0; 6, 19357-13-2; 7, 16067-65-5; 6, 118071-20-8; 9, 118071-21-9; 10, 100873-73-2; 11, 60945-03-1; phthalic anhy-
dride, 85-44-9; benzoylhydrazine, 613-94-5; p-methylbenzoylhydrazine 3619-22-5; p-methoxybenzoylhydrazine, 3290-99-1; p-bromobenzoylhydrazine, 5933-32-4; 4-pyridinecarboxylic acid hydrazide, 54-85-3; 2aminobenzothiazole, 136-95-8.

Literature Clited

(1) Hirrano, S. Carbohydr. Res. 1971, 16, 229.
(2) Lemieux, R. U.; Takeda, T.; Chung, B. Y. ACS Symp. Ser. 1976, 39, 90.
(3) El Sadek, M. M.; Warren, C. D.; Jeanloz, R. W. Carbohydr. Res. 1982, 100, C35.
(4) Billmann, J. H.; Harting, W. F. J. Am. Chem. Soc. 1948, 70, 1473.
(5) (a) Kidd, D. A. A.; King, F. E. Nature 1948, 162, 776. (b) Kidd, D. A. A.; King, F. E. J. Chem. Soc. 1949, 3315
(6) Grassmann, W.; Schulte-Vebbing, E. Chem. Ber. 1950, 83, 244.

Received for review February 24, 1988. Revised June 8, 1988. Accepted October 31, 1988.

Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of \boldsymbol{C}-Acetyl- N -aryInitrilimines with Acrylic Acid Derivatives and α, β-Unsaturated Ketones

Ahmad S. Shawall* and Saleh T. Ezmirly
Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 9028, Jeddah 21413, Saudi Arabia

Hamdl M. Hassaneen
Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt

Abstract

The cycloaddition of a series of \boldsymbol{C}-acetyl- \mathbf{N}-aryinitrillmines 6a-e to acrylamide (2a), acrylonitrile (2b), and substituted benzylideneacetophenones $4 a-d$ has been studled. Under thermal conditions, these 1,3-dipolar cycloadditions proceed with absolute regloselectivity to yield $5-\mathrm{CONH}_{2}-$ - $5-\mathrm{CN}$-, and 5-COAr-substituted 2-pyrazolines 3A, 3B, and 5, respectively. The structures of the cycloadducts $3 \mathrm{~A}, 3 \mathrm{~B}$, and 5 were assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR and IR spectra.

Nitrilimines 1a-e have been known to react with acrylic acid derivatives 2a-c to give predominantly 5 -substituted 2 pyrazolines 3 (Scheme I) (1). Also, the reactions of 1a-c with benzylideneacetophenone ($4 ; R=\mathrm{C}_{8} \mathrm{H}_{5}$) have been reported to give predominantly 5-benzoyl-4-phenyl-2-pyrazolines 5 (Scheme I) $(2,3,7)$. The regioselectivity of these reactions was satisfactorily rationalized in terms of the nitrilimine HOMO-dipolarophile LUMO interaction (2, 3). A recent report (4) indicated, however, that the reaction of C-acetyl- N-(p-methoxyphenyl)nitrilimine (6a) with acrylamide (2a) and the substituted benzylideneacetophenones 4a-c gave exclusively 1 -aryl-3-acetyl-5-aminocarbonyl-2-pyrazoline 7 and 1,5-diaryl-3-acetyl-4-aroyl-2pyrazolines $8 \mathbf{a}-\mathbf{c}$, respectively (Scheme II). The regiochemistry of such products is contrary to our expectation; therefore, we reexamined the regiochemistry of the cycloadditions of C-acetyl- N-aryInitrilimines $\mathbf{6 a - e}$ to acrylic acid derivatives and α, β-unsaturated ketones. In this article we report on the results of the study of the reactions of $\mathbf{6 a - e}$ with acrylamide (2a), acrylonitrile (2b), and a series of four substituted benzylideneacetophenones 4a-d (Scheme III).

Scheme II

Results and Discussion

The reactions of C-acetyl \mathbf{N}-aryInitrilimines $\mathbf{6 a - e}$, generated in situ by treatment of C-acetyl- N-arylformohydrazidoyl chlorides 9a-e with triethylamine, with the dipolarophiles 2a, 2b, and 4a-d were carried out in refluxing chloroform. The results are summarized in Table I. These results indicate that the cycloadditions of 6 with acrylamide (2a), acrylonitrile (2b), and α, β-unsaturated ketones 4a-d are regioselective, yielding exclusively the corresponding $5-\mathrm{CONH}_{2}, 5-\mathrm{CN}$, and $5-\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{R}$

Table I. Cycloadducts from the Reactions of 9a-e with Acrylic Acid Derivatives 2a,b and α, β-Unsaturated Ketones 4a-d

entry	reactants	reaction time, h	cycloadduct	mp, ${ }^{\circ} \mathrm{C}$	yield, ${ }^{\text {a }}$ \%
1	$9 \mathrm{a}+2 \mathrm{a}$	5	3Aa	$223{ }^{\text {b }}$	70
2	$9 b+2 a$	5	3Ab	255	65
3	$9 \mathrm{c}+2 \mathrm{a}$	5	3Ac	$269{ }^{\text {c }}$	70
4	$9 \mathrm{~d}+2 \mathrm{a}$	8	3Ad	255	55
5	$9 \mathrm{a}+2 \mathrm{~b}$	9	3Ba	96	80
6	$9 \mathrm{~b}+2 \mathrm{~b}$	4	3Bb	111	75
7	$9 \mathrm{c}+2 \mathrm{~b}$	5	3Bc	123	73
8	$9 \mathrm{~d}+2 \mathrm{~b}$	8	3Bd	110	70
9	$9 \mathrm{e}+2 \mathrm{~b}$	4	3Be	122	70
10	$9 \mathrm{a}+4 \mathrm{a}$	19	5 a	178	45
11	$9 \mathrm{~b}+4 \mathrm{a}$	18	5b	159	50
12	$9 \mathbf{a}+4 \mathbf{b}$	20	5 c	153	43
13	$9 \mathrm{a}+4 \mathbf{c}$	18	5d	134	48
14	$9 \mathrm{a}+4 \mathrm{~d}$	29	5 e	164	40

substituted 2-pyrazolines 3A, 3B, and 5, respectively (Scheme III). When these reactions were carried out in benzene, similar regiochemical results were obtained, indicating that the regiochemistry of the cycloaddition reactions of 6 is independent of the solvent polarity.

The regiochemistry of the cycloadducts 3Aa-e was assigned on the basis of the chemical shifts of the methylene $\left(4-\mathrm{CH}_{2}\right)$ and methine ($5-\mathrm{CH}$) protons (Table II). Literature ${ }^{1} \mathrm{H}$ NMR data of

Scheme III

Table II. ${ }^{1}$ H NMR and IR Spectral Data of the Cycloadducts 3Aa-d and 3Ba-e

$3 \mathrm{~A}, \mathrm{R}=\mathrm{CONH}_{2}$
$3 \mathbf{B}, \mathrm{R}=\mathrm{CN}$

compd no.	$\delta_{,}{ }^{a-c} \mathrm{ppm}$ (multiplicity)				$\bar{\nu},{ }^{\text {d }} \mathrm{cm}^{-1}$
	H_{a}	H_{b}	H_{c}	$\mathrm{CH}_{3} \mathrm{CO}$	
3Aa	4.87 (dd)	3.68 (dd)	2.89 (dd)	2.40 (s)	1670, 1630, 3190, 3260, 3360
3Ab	4.90 (dd)	3.54 (dd)	2.67 (dd)	2.47 (s)	1675, 1640, 3200, 3320, 3400
3Ac	4.90 (dd)	3.68 (dd)	2.88 (dd)	2.43 (s)	1670, 1640, 3180, 3240, 3360
3Ad	4.95 (dd)	3.55 (dd)	2.80 (dd)	2.45 (s)	1665, 1630, 3200, 3300, 3380
3Ba	5.02 (dd)	3.51 (d)	3.50 (d)	2.52 (s)	1650
3Bb	5.07 (dd)	3.57 (d)	3.55 (d)	2.55 (s)	1660
3 Be	5.05 (dd)	3.57 (d)	3.56 (d)	2.50 (s)	1660
3Bd	5.07 (dd)	3.55 (d)	3.50 (d)	2.50 (s)	1660
3Be	5.08 (dd)	3.72 (d)	3.60 (d)	2.55 (s)	1665

${ }^{a}$ All compounds exhibit aromatic proton multiplet in the region $7.0-8.0 \mathrm{ppm}$. ${ }^{b}$ For compounds $3 \mathrm{Aa}-\mathrm{d}: J_{\mathrm{a}, \mathrm{b}}=12 \mathrm{~Hz} ; J_{\mathrm{a}, \mathrm{c}}=7 \mathrm{~Hz} ; J_{\mathrm{b}, \mathrm{c}}=$ 18 Hz . For compounds $3 \mathrm{Ba}-\mathrm{e}: J_{\mathrm{a}, \mathrm{b}}=10.8 \mathrm{~Hz} ; J_{\mathrm{a}, \mathrm{c}}=9 \mathrm{~Hz} ; J_{\mathrm{b}, \mathrm{c}}=0.0 \mathrm{~Hz}$. ${ }^{\circ}$ Compounds 3 Aa and 3 Ba exhibit a singlet near $3.75-3.84 \mathrm{ppm}$ for $\mathrm{CH}_{3} \mathrm{OAr}$ protons, whereas compounds $3 \mathbf{A c}$ and 3 Bc show a singlet near $2.27-2.35 \mathrm{ppm}$ for $\mathrm{CH}_{3} \mathrm{Ar}$ protons. ${ }^{d}$ For compounds $3 \mathrm{Ba}-\mathrm{e}$ the nitrile absorption is either absent or very weak near $2220 \mathrm{~cm}^{-1}$.

Table III. ${ }^{1} \mathrm{H}$ NMR and IR Spectral Data of the Cycloadducts 5a-e

compd no.	$\delta^{\text {,a,b }} \mathrm{ppm}$ (multiplicity)				$\bar{\nu}, \mathrm{cm}^{-1}$
	H_{a}	H_{b}	$\mathrm{CH}_{3} \mathrm{CO}$	$\mathrm{CH}_{3} \mathrm{OAr}$	
5 a	5.77 (d)	4.50 (d)	2.48 (s)	3.80 (s)	1680, 1650
5b	5.75 (d)	4.50 (d)	2.47 (s)		1680, 1650
5 c	5.68 (d)	4.40 (d)	2.40 (s)	3.73 (s)	1685, 1640
				3.75 (s)	
5 d	5.68 (d)	4.45 (d)	2.45 (s)	3.75 (s)	1680, 1640
5 e	5.67 (d)	4.40 (d)	2.44 (s)	3.74 (s)	1670, 1645
				$3.80 \text { (s) }$	

[^0]Table IV. Characteristic ${ }^{1}$ H NMR Data of Some 2-Pyrazoline Derivatives

entry	R/R'/X/Y	δ, ppm			ref
		H_{a}	H_{b}	H_{c}	
$\mathrm{Y}=\mathrm{H}_{\mathrm{c}}$					
1	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOC} / \mathrm{H} / \mathrm{CONH}_{2}$	4.90	3.54	2.97	3,15
2	2-thienyl/ $\mathrm{H} / \mathrm{CONH}_{2}$	4.66	3.74	3.26	8
3	2-thienyl/4- $\mathrm{NO}_{2} / \mathrm{CONH}_{2}$	4.90	3.60	3.00	8
4	$\mathrm{CH}_{3} \mathrm{CO} / \mathrm{H} / \mathrm{CONH}_{2}$	4.90	3.54	2.67	a
5	$\mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{H} / \mathrm{CN}$	4.88	3.55	3.55	5
6	$\mathrm{COOC}_{2} \mathrm{H}_{5} / \mathrm{H} / \mathrm{CN}$	5.04	3.50	3.50	3,15
7	$\mathrm{COC}_{6} \mathrm{H}_{5} / \mathrm{H} / \mathrm{CN}$	5.12	3.77	3.77	9
8	$\mathrm{CH}_{3} / 4-\mathrm{NO}_{2} / \mathrm{CN}$	5.03	3.45	3.45	10
9	2-thienyl/H/CN	4.91	3.61	3.61	8
10	2-thienyl/4- $\mathrm{NO}_{2} / \mathrm{CN}$	5.10	3.60	3.60	8
11	$\mathrm{CH}_{3} \mathrm{CO} / \mathrm{H} / \mathrm{CN}$	5.07	3.57	3.55	a
$\mathrm{Y} \nrightarrow \mathrm{H}$					
12	$\mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{H} / \mathrm{COOCH}_{3} / \mathrm{COOCH}_{3}$	5.17	4.57		5
13	$\mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{H} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$	5.75	5.26		6
14	$\mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{H} / \mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{C}_{6} \mathrm{H}_{5}$	5.09	4.48		5
15	$\mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{H} / \mathrm{COOCH}_{3} / \mathrm{C}_{6} \mathrm{H}_{5}$	5.57	4.24		5,11
16	$\mathrm{C}_{8} \mathrm{H}_{5} / \mathrm{H} / \mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{COOCH}_{3}$	4.79	4.67		5,11
17	$\mathrm{COOC}_{2} \mathrm{H}_{5} / \mathrm{H} / \mathrm{COC}_{6} \mathrm{H}_{5} / \mathrm{C}_{6} \mathrm{H}_{5}$	5.77	4.43		3, 7
18	$\mathrm{COOC}_{2} \mathrm{H}_{5} / \mathrm{H} / \mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{COC}_{6} \mathrm{H}_{5}$	5.47	5.07		3, 7
19	$\mathrm{CH}_{3} \mathrm{CO} / \mathrm{H} / \mathrm{COC}_{6} \mathrm{H}_{5} / \mathrm{C}_{6} \mathrm{H}_{5}$	5.75	4.50		a

${ }^{a}$ This work.

5-substituted and 4,5-disubstituted 2-pyrazoline derivatives indicate that the chemical shift of $5-\mathrm{H}$ appears in general at lower field than that of $4-\mathrm{H}(3,5-11)$ (Table III). Comparison of the spectral data of 3Aa-e with those reported for 2-pyrazoline-5-carboxamides (see entries 1-3 in Table III) shows that each of the methine and methylene protons shows comparable chemical shifts. Such similarity between the chemical shifts of the 2-pyrazoline ring protons in 2-pyrazoline-5carboxamides and those of the cycloadducts 3Aa-e substantiates the assigned regiochemistry of the latter.

The geminal protons $4-\mathrm{H}_{\mathrm{b}}$ and $4-\mathrm{H}_{\mathrm{c}}$ in $3 \mathrm{Aa}-\theta$ constitute the $A B$ part of an $A B X$ pattern, and their signals appear as two double doublets (dd). The proton $4-\mathrm{H}_{\mathrm{c}}$ was assigned the high field signal due to shielding by the proton $5-\mathrm{H}_{\mathrm{a}}$ with which it has a smaller coupling constant $J_{a, c}=7 \mathrm{~Hz}$, by comparison to $4 \mathrm{H}_{\mathrm{b}}$, which by virtue of its transdiaxial disposition to $5-\mathrm{H}_{\mathrm{a}}$ had a $J_{\mathrm{a}, \mathrm{b}}$ of $12 \mathrm{~Hz}(3,5-12)$.
The structure of the adducts 3Ba-e was established on the basis of the absence of the nitrile absorption in their infrared spectra. Aliphatic nitriles activated by a nitrogen or an oxygen atom in the α-position (13, 14) such as the 5-cyano-2pyrazoline derivatives exhibit no nitrile absorption in their IR spectra $(9,15)$. On the other hand, the nitrile group in the 4-cyano-substituted 2-pyrazoline and pyrazole derivatives is IR active, showing a strong band in the $2400-2000-\mathrm{cm}^{-1}$ region (16). In the infrared spectra of the cycloadducts isolated from the reaction of 6 with acrylonitrile, the nitrile absorption was absent or very weak if present. Therefore, they were assigned the 5-cyano-3-acetyl-1-aryl-2-pyrazoline structure 3B.

The assigned structure 3B is further supported by a comparison of the chemical shifts of the 2-pyrazoline ring protons with those in the literature (5,7-10). The chemical shifts observed at $\delta 5.02-5.08,3.51-3.72$, and $3.5-3.60 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR spectra of 3Ba-e (Table II) correspond well with the reported values of the 2-pyrazoline ring protons of other 3-Rsubstituted 1-aryl-5-cyano-2-pyrazolines (see enteries 5-10 in Table III). It is noteworthy to mention that the diastereotopic protons $4-\mathrm{H}_{0}$ and $4-\mathrm{H}_{\mathrm{c}}$ in 3Ba-e give different signals but with little chemical shift difference ($\Delta \delta 0.01-0.08 \mathrm{ppm}$); each splits
into a doublet by the methine proton $5-\mathrm{H}_{\mathrm{a}}$, and the downfield lines of the two doublets happen to coincide. Under the conditions of measurement, the spectra showed no spliting due to coupling between $4-\mathrm{H}_{b}$ and $4-\mathrm{H}_{\mathrm{c}}$, which is expected to appear at higher gain. That the geminal protons $4-\mathrm{H}_{\mathrm{b}}$ and $4-\mathrm{H}_{\mathrm{c}}$ of 3Ba-e are the $A B$ part of the $A B X$ system is substantiated by the appearance of a four-line pattern for the $5-\mathrm{H}_{\mathrm{a}}$ due to successive splitting by $4-\mathrm{H}_{b}$ and $4-\mathrm{H}_{c}$ protons (Table II). The latter was identified by their chemical shifts and vicinal coupling constants with $5-\mathrm{H}_{\mathrm{a}}(12)$.

Direct evidence in support of the structure 5 for the cycloadducts obtained from the reaction of 6 with 4 was obtained from the spacing between the chemical shifts of the pyrazoline protons $4-\mathrm{H}$ and $5-\mathrm{H}$ and the stereochemistry from the comparison of the coupling constants. In their ${ }^{1} \mathrm{H}$ NMR spectra the signals for $4-\mathrm{H}$ and $5-\mathrm{H}$ protons of $5 \mathrm{a}-\mathrm{e}$ appeared as a pair of doublets with a chemical shift difference of about 1.3 ppm (Table III). The latter value corresponds well with the reported value ($\Delta \delta>1.0 \mathrm{ppm}$) of other related 3 -R-substituted 4 -aryl-5-aroyl-2-pyrazolines and not with the value of $\Delta \delta<0.1$ reported for 4-aroyl regioisomers (Table IV) (3, 5, 7, 11).

The stereochemistry of the cycloadducts 5a-e has been unequivocally made by means of the vicinal coupling constants between $4-\mathrm{H}$ and $5-\mathrm{H}$ protons. The vicinal couplings have been shown to be stereospecific $J_{\text {trans }}(6 \mathrm{~Hz})<J_{\text {cis }}(12 \mathrm{~Hz})(5,6)$. Thus, on the basis of the coupling constant value $J_{4,5}=6 \mathrm{~Hz}$, the cycloadducts 5 a-e were assigned the E-configuration indicated.

Experimental Section

Melting points were determined on a Bockmonoscop apparatus (hot stage type) and are uncorrected. Infrared spectra were recorded on Zeiss infrared spectrophotometer Model IMT6. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian EM 390-$90-\mathrm{MHz}$ spectrometer. All special chemical shifts are given in parts per million downfield from TMS. Microanalytical analyses were performed with the Perkin-Elmer elemental analyzer Model 240-B at King Abdulaziz University. The elemental analysis data
were submitted for review, C-Acetyl- N-arylformohydrazidoyl chlorides 9a-e were prepared according to known procedure (17). Acrylamide and acrylonitrile were Aldrich laboratory reagents. Benzylideneacetophenone (4a) was obtained from Merck. The other substituted benzylideneacetophenones 4b-d were prepared according to literature procedures (18). Reaction mixtures were analyzed on Fluka silica gel cards with fluorescent indicator 254 on aluminum cards, and the spots were detected under UV light (254 nm). The preparative thinlayer chromatographic separation was carried out on glass plates ($20 \times 20 \mathrm{~cm}$) covered with Fluka silica gel G with 13% gypsum and with a mixture of carbon tetrachloride and chloroform in ratio of $5: 1.5(\mathrm{v} / \mathrm{v})$ as eluent.

Reactlon of 9 with 2 or 4. General Method. Triethylamine $(0.7 \mathrm{~mL}, 5 \mathrm{mmol})$ was added to a chloroform solution (50 mL) of $9(5 \mathrm{mmol})$ and 2 (or 4$)(5 \mathrm{mmol})$ at room temperature. The mixture was refluxed until the complete disappearance of 9 or the dipolarophile 2 (or 4) as indicated by thin-layer-chromatographic analysis. The mixture was cooled and then washed with water three times, and the chioroform layer was collected, dried over anhydrous sodium sulfate, and then filtered. The solvent in the filtrate was evaporated under reduced pressure, and the residue left was triturated with methanol, where it solidified. The crude solid was collected, and its ${ }^{1} \mathrm{H}$ NMR spectrum in deuterated chloroform was recorded. The spectra showed the presence of only one regioisomer in each case. The product was crystallized from ethanol or a mixture of ethanol and chloroform. Only the products 5c and 5e were separated by preparative thin-layer chromatography. The physical constants of the products are given in Table I, and their spectral data are gathered in Tables II and III.

Reglstry No. 2a, 79-06-1; 2b, 107-13-1; 3Aa, 118317-92-3; 3Ab, 118317-93-4; 3Ac, 118317-94-5; 3Ad, 118317-95-6; 3Ba, 118317-96-7;

3Bb, 118317-97-8; 3Bc, 118317-98-9; 3Bd, 118317-99-0; 3Be, 118318-00-6; 4a, 94-41-7; 4b, 959-33-1; 4c, 956-04-7; 4d, 36685-66-2; 5a, 118318-01-7; 5b, 118318-02-8; 5c, 118318-03-9; 5d, 118318-04-0; 5e, 118318-05-1; 9a, 56886-07-8; 9b, 18440-58-9; 9c, 18440-55-6; 9d, 18247-78-4; 9e, 18247-79-5.

Literature Clied

(1) Shawali, A. S.; Parkanyi, C. J. Heterocyct. Chem. 1980, 17, 833.
(2) Bianchi, G.; Gandolfi, R.; DeMicheli J. Chem. Res ., Synop. 1981, 6; J. Chem. Res ., Miniprint 1981, 135.
(3) Shimizu, T.; Hayashi, Y.; Nishlo, T.; Teramura, K. Bull. Chem. Soc. Jpn. 1984, 57, 787.
(4) Tewari, R. S.; Parihar, P.; Dixit, P. D. J. Chem. Eng. Data 1983, 28, 281.
(5) Sustmann, R.; Huisgen, R.; Huber Chem. Ber. 1962, 100, 1802. Huisgen, R.; Knupfer, H.; Sustmann, R.; Wallifillich, G.; Weberndorfer, V. Tetrahedron 1982, 17, 3.
(6) Oida, T.; Shimizu, T.; Hayashi, Y.; Teramura, K. Bull. Chem. Soc. Jpn. 1981, 54, 1429.
(7) Ezmirly, S. T.; Shawali, A. S. Tetrahedron 1988, 44, 1743.
(8) Hassaneen, H. M.; Mousa, H. A. H.; Abed, N. M.; Shawall, A. S. Heterocycles 1988, 27, 695.
(9) Shawali, A. S.; Abdelhamid, A. O. Bull. Chem. Soc. Jpn. 1976, 49, 321.
(10) Shawali, A. S.; Hassaneen, H. M. Indlan. J. Chem. 1976, 14B, 425.
(11) Clovis, J. S.; Eckell, A.; Huisgen, R.; Sustmann, R. Chem. Ber. 1967, $100,60$.
(12) Buttikus, H.; Bose, R. J. J. Org. Chem. 1971, 36, 3895, Shine, H. J.; Fang, L. T.; Mallory, H. E.; Chamberlin, N. F.; Stehling, F. Ibid. 1963, 28, 2326.
(13) Tanaka, K.; Maeno, S.; Mitsuhashi Chem. Lett. 1982, 543.
(14) Butt, G.; Climi, J.; Hoobin, P. M.; Topson, R. D. Spectrochim. Acta 1980, 36A, 52.
(15) Ezmiry, S. T.; Shawali, A. S. J. Heterocycl. Chem. 1988, 25, 257.
(16) Shawall, A. S. J. Heterocycl. Chem. 1977, 14, 375. Shawali, A. S.; Hassaneen, H. M.; Sami, Fahham, H. M. Ibid. 1976, 13, 1137,
(17) Favrel, G. Bull. Soc. Chim. Fr. 1927, 41, 494, Eweiss, N. F.; Osman, A. O. J. Heterocycl. Chem. 1980, 17, 1713.
(18) Tewari, R. S.; Parihar, P. Tetrahedron 1981, 39, 129.

Received for review June 2, 1988. Revised October 14, 1988. Accepted November 7, 1988.

[^0]: ${ }^{a} J_{a, b}=6 \mathrm{~Hz} .{ }^{b}$ All compounds exhibit aromatic proton multiplet in the region $6.9-8.2 \mathrm{ppm}$.

